الگوی نسل بعدی هوش‌مصنوعی چیست؟

الگوی نسل بعدی هوش‌مصنوعی چیست؟

نسل بعدی هوش‌مصنوعی از حیوانات الگو می‌گیرد
نسل بعدی هوش‌مصنوعی از حیوانات الگو می‌گیرد
مجله علمی ایلیاد - دانشمند علوم عصبی «آنتونی زادور» نشان می‌دهد که فرگشت و مغز حیوانات چگونه می‌تواند منبع الهام ارزشمندی برای یادگیری ماشینی باشد؛ به ویژه نقش آن در کمک به هوش‌مصنوعی برای برطرف‌سازی برخی از چالش‌برانگیزترین مسائل قابل توجه است. «تونی زادور» دانشمند علوم عصبی در آزمایشگاه کولد هاربور اسپرینگ «CSHL» می‌گوید: «هوش‌مصنوعی می‌تواند چیزهای زیادی از مغز حیوانات یاد بگیرد.» حالا زادور امیدوار است آموزه‌های علوم عصبی بتواند به نسل بعدی هوش‌مصنوعی کمک کند تا برخی از موانع سخت را از پیش رو بردارد. آنتونی زادور فعالیت‌های قابل توجهی برای توضیح آن دسته از شبکه‌های عصبی پیچیده انجام داده که مغز زنده را تشکیل می‌دهند. اما او فعالیت‌های علمی خود را با مطالعه‌ی شبکه‌های عصبی مصنوعی «ANN» آغاز کرد. این شبکه‌ها که نقش سیستم‌های محاسباتی را در انقلاب هوش‌مصنوعی جدید بر عهده دارند، از شبکه‌های عصبی موجود در مغز حیوانات و انسان‌ها الهام می‌گیرند.

زادور در طی مقاله آینده‌نگری که اخیراً در مجله‌ی Nature Communications چاپ شد، توضیح می‌دهد که الگوریتم‌های یادگیری پیشرفته چگونه این امکان را به سیستم‌های هوش‌مصنوعی می‌دهند تا عملکردی فراتر از انسان در رفع مسائل پیچیده از خود بر جای بگذارند. از جمله این مسائل، می‌توان به شطرنج و پوکر اشاره کرد. در عین حال، ماشین‌ها هنوز با یک سری از ساده‌ترین مشکلاتی روبه‌رو هستند که توان حل‌شان را ندارند. حل این تناقض شاید به ربات‌ها اجازه بدهد تا کارها را به شکل موثر و کارآمدتری انجام دهند. برای مثال، شستن ظروف کثیف به‌عنوان یکی از پیش پا افتاده‌ترین کارها می‌تواند در دستور کار ربات‌ها باشد. مدیر عامل گوگل «اریک اشمیت» روزی این کار را درخواستِ شماره‌ی ۱‍، اما مساله‌ای فوق‌العاده دشوار برای ربات قلمداد کرد.

زادور این چنین توضیح می‌دهد: «کارهایی که برای ما دشوار به‌نظر می‌آیند، مثل تفکر انتزاعی یا انجام بازی شطرنج، برای ماشین‌ها اصلاً دشوار نیستند. کارهایی که از نظر ما آسان هستند، مثل تعامل با دنیای فیزیکی، برای ربات‌ها دشوار هستند. دلیل اینکه فکر می‌کنیم این کارها سخت هستند این است که ما نیم میلیارد سال فرگشت را پشت سر گذاشته‌ایم. در این بازه‌ی زمانی، مدارهای مغز ما سر جای خود قرار گرفتند تا اینکه بتوانیم آن کارها را بدون زحمت خاصی انجام دهیم.»

به باور زادور، رمزِ یادگیری سریع، الگوریتم یادگیری عمومی نیست. او اظهار می‌دارد که شبکه‌های عصبی زیستی که دوره‌ی فرگشت را پشت سر گذاشته‌اند، نوعی داربست برای تسهیل یادگیری سریع و آسان در برخی کارها فراهم می‌کنند؛ معمولاً کارهایی که برای بقا لازم هستند. برای مثال، زادور به حیاط پشت خانه‌مان اشاره می‌کند.

زادور بیان کرد: «سنجاب‌هایی دارید که می‌توانند چند هفته پس از تولد از درختی به درخت دیگر بپرند، اما یادگیری موش‌ها به همین شکل نیست. زیرا سنجاب به لحاظ ژنتیکی این مزیت را به‌دست آورده تا به موجودی ساکن درخت تبدیل شود. یکی از نتایج این مزیت ژنتیکی، مداربندی ذاتی و درونی است که نقش مهمی در هدایت یادگیری اولیه‌ی حیوان دارد. با این حال، شاید ربات‌های خانگی آینده با شستن ظروف بتوانند ما را شگفت‌زده کنند.»
مترجممنصور نقی‌لو - مجله علمی ایلیاد
منبعscitechdaily.com
مشاوره رایگان اخذ پذیرش و ویزای تحصیلی از دانشگاه های استرالیا،آمریکا،کانادا،انگلستان ، نیوزیلند و مالزی
در صورتی که مایلید شرایط شما جهت ادامه تحصیل در دانشگاه های خارج از کشور، توسط مشاورین باتجربه و متخصص موسسه «ایلیاد بین‌الملل» ارزشیابی گردد، فرم مشاوره زیر را تکمیل نمایید. پس از دریافت اطلاعات، حداکثر طی دو روز کاری با شما تماس خواهیم گرفت. قابل توجه است که موسسه ایلیاد بین‌الملل دارای مجوز اعزام دانشجو از وزارت علوم ایران می‌باشند.