معرفی نقاط کوانتومی،روش های سنتزوکاربردهایش

معرفی نقاط کوانتومی،روش های سنتزوکاربردهایش
معرفی نقاط کوانتومی،روش های سنتزوکاربردهایش
همان طور که گفتیم نقاط کوانتومی دسته ای از نانوذرات می باشند،یک نانوذره ،ذره ای است که ابعاد آن در حدود می باشد،درواقع با دسته ای از موادبا خواص به طور مشخص متفاوت از حجم شان وخواص  (100nmتا1nm) مولکولی همتای آن ها روبروهستیم. دو ویژگی مهم نانو ذرات را از دیگرگروه های متمایز جدامی سازد:
افزایش نسبت سطح به حجم نانوذرات که موجب می شود اتم های واقع درسطح اثر بسیار بیشتری نسبت به اتم های درون حجم ذرات برروی خواص آن ها داشته باشد و همچنین تا ثیرات کوانتومی رابه عنوان ویژگی دوم مطرح می شود.
 

معرفی نقاط کوانتومی

نقطه کوانتومی یک ناحیه از بلورنیمه رسانا است که الکترون ها،حفره ها ویا هردو آن ها را در سه بعد دربرمی گیرد. هر سه بعد ماده در مقیاس نانومتری قرار داردوویژگی اصلی این نقاط انتشار نور است. ابعاد ،آن قدر کوچک هستندکه خواص ماده باقوانین فیزیک کلاسیک قابل توجیه نباشد و فقط فیزیک کوانتوم بتواند رفتار ماده را توجیه کند. نقاط کوانتومی، به خاطر کوچک بودنشان، دسته ی صربه‌فردی از نیمه‌رساناها به شمار می‌روند. اهمیت نیمه‌رسانا بودن نقاط کوانتومی در این است که رسانایی الکتریکی این مواد را می‌توان با محرک‌های خارجی مانند میدان الکتریکی یا تابش نور تغییر داد، تا حدی که از نارسانا به رسانا تبدیل شوند و مانند یک کلید عمل کنند.
 
این خاصیت، نیمه‌رساناها را به یکی از اجزای حیاتی انواع مدارهای الکتریکی و ابزارهای نوری تبدیل کرده است. پهنای نقاط کوانتومی، بین 2 تا 10 نانومتر، یعنی معادل کنار هم قرار گرفتن 10 تا 50 اتم است. در این ابعاد کوچک، مواد رفتار متفاوتی دارند و این رفتار متفاوت قابلیت‌های بی‌سابقه‌ای در کاربردهای علمی و فنی به نقاط کوانتومی می‌بخشد.
 
مطالعات درمورد ذرات کوانتومی درسال 1970 شروع شدودرسال 1980 این گروه ازنانوذرات نیمه هادی توسط الکسی Ekimov به وسیله ماتریس وتوسط لوئیس E.Brusدرمحلول کلوئیدی ساخته شد وMark Reed  اصطلاح "نقطه کوانتومی "را ابداع کرد. نقاط کوانتومی عملکرد بسیار جالبی دارد،به این صورت که قابلیت جذب هرتعداد الکترون وارده را دارا می باشند.بنابراین باوجود دارابودن یک هسته اتمی خا ص ،براساس الکترون های وارده به آن ها،خواص ورفتارمتفاوتی ازخودبروز می دهند.بعنوان مثال،نقاط کوانتومی درحالت داشتن یک الکترون خصوصیات هیدروژن راداراهستند وبا داشتن 6الکترون منجربه تولید کربن مصنوعی وبا79الکترون منجر به تولید طلای مصنوعی می شوند.ضمنا اتمهای مصنوعی بوجودآمده توسط این سیستم قابلیت پیوند بادیگر اتم ها را دارا هستند که این مسئله منجر به تولید مولکول های مصنوعی ودرنهایت موادمصنوعی خواهد گردید.
 

بررسی خواص  نقاط کوانتومی

1. درنقاط کوانتومی الکترونها درست مثل وضعیت یک اتم ، موقعیت های گسسته ای از انرژی را اشغال می کنند ونقاط کوانتومی شباهت زیادی به اتم های واقعی دارند،به همین علت در مکانیک کوانتومی به آن ها لفظ"اتم های مصنوعی"می دهند.
 
2. نقاط کوانتومی طیف نشری نوری گسسته ای راکه مربوط به ترازهای الکترونی گسسته(مانند اتم های واقعی)می شودرادارا هستند.
 
3. نقاط کوانتومی نیمه رسانا زمانی که بااتم واقعی مقایسه می شوند،ویژگی مشخصی دارند،تعداد الکترون های آزاد رامی توان به کمک ابزارخارجی تغییرداد.این یک راه آسانتر برای دستیابی به اتم های مصنوعی با3،2،1،یا تعداد بیشتری الکترون می باشد.بنابراین اضافه ویا کم کردن الکترون ها به ذرات کوانتومی طیف وسیعی ازموادمصنوعی رادراختیاربشرقرار خواهد داد.با این وجود نباید فراموش کرد که موادمصنوعی تولیدشده توسط این روش،خصوصیات مواد اصلی رابه تمامی دارا نخواهند بود.به نظر می رسد که سرانجام مواد ساخته شده، درواقع متشکل از نانوربا ت هایی خواهند بود که از لحاظ ظاهری وعملکرد،تحت فرمان انسان قرارخواهند گرفت.
 
4. یکی از خاصیت های مهم نقاط کوانتومی نیمه رسانا منبع کلومبی می باشد .این بدین معناست که اگر سدهای تونل زنی یک نقطه به اندازه کافی بالا باشد ،به انرژی خارجی برای تزریق یک الکترون اضافه به داخل نقاط کوانتومی نیمه رسانا نیاز است.
 
5. همه نیمه رسانا شامل تعدادی نوار انرژی هستند. هر نوار انرژی نیز دارای تعدادی تراز انرژی است درواقع بازة مشخصی از انرژی را دارا می باشد. وقتی یک الکترون انرژی متفاوتی از الکترون دیگر دارد، گفته می‌شود که در یک تراز انرژی متفاوت قرار دارد. خاصیت ذاتی الکترون‌ها باعث می‌شود که بیش از دو الکترون نتوانند در هر تراز انرژی قرار بگیرند. در یک تودة بزرگ از مادة نیمه‌رسانا(حالت bulk )، ترازهای انرژی بسیار نزدیک هم هستند؛ آن‌قدر نزدیک که به صورت یک بازة پیوسته توصیف می ‌شوند، یعنی تفاوت انرژی دو تراز مجاور در حد صفر است. بین نوارهای انرژی، فاصله‌ای (شکاف ،گپ )وجود دارد که هیچ الکترونی نمی‌تواند درون آن قرار گیردوالکترون ها مجاز به داشتن انرژی در این فاصله نیستند، این فاصله را گاف انرژی می‌گوییم. الکترون‌هایی که ترازهای پایین گپ را اشغال می‌کنند «الکترون‌های ظرفیت در باند ظرفیت» و الکترون‌های ترازهای بالای گپ «الکترون‌های رسانش در باند رسانش» نامیده می‌شوند.
 
در مواد نیمه‌رسانا به حالت توده‌ای (حالت bulk )، درصد بسیار کمی از الکترون‌ها در نوار رسانش قرار می‌گیرند و بیشتر الکترون‌ها در نوار ظرفیت قرار می‌گیرند، به طوری که آنها را تقریباً پر می‌کنند. همین پدیده باعث می‌شود که مواد نیمه‌رسانا در حالت عادی (غیر برانگیخته) نارسانای جریان الکتریکی باشند. اگر الکترون‌های بیشتری بخواهند در باند رسانش قرار گیرند، باید انرژی کافی برای بالارفتن از گپ انرژی دریافت کنند. تحریک با نور، میدان الکتریکی یا گرما می‌تواند تعدادی از الکترون‌ها را از نوار ظرفیت به نوار رسانش بفرستد. در این حالت، تراز ظرفیتی که خالی می‌شود، «حفره» نام دارد، زیرا در طی این رویداد، یک حفرة موقت در نوار ظرفیت به وجود می‌آید.
 
تحریکی که باعث جهش الکترون از نوار ظرفیت به نوار رسانش و ایجاد حفره می‌شود، باید انرژی‌ای بیش از پهنای گپ داشته باشد. انرژی پهنای گپ در نیمه‌رساناهای توده‌ای، مقدار ثابتی است که تنها به ترکیب آن مواد بستگی دارد. الکترون‌هایی که به نوار رسانش برانگیخته شده‌اند، بعد از مدتی دوباره با از دست دادن انرژیِ ، به نوار ظرفیت برمی‌گردند.و بدین ترتیب، انرژی را به صورت پرتوهای نور مرئی (یا همان فوتون) ساطع می‌کنند. هر چه گاف انرژی بزرگ‌تر باشد، انرژی پرتوهای نور مرئی که از جسم ساطع می‌شود، بیش‌تر است و پرتوهای نور مرئی به سمت رنگ آبی تمایل می‌یابند. در مقابل، هر چه گاف انرژی کوچک‌تر باشد، انرژی پرتوهای نور مرئی که از جسم ساطع می‌شود، کم‌تر است و پرتوهای نور مرئی به سمت رنگ قرمز تمایل می‌یابند. از آنجا که گاف  انرژی نیمه‌رسانا کاملاً معین است، نور تنها در طول موج معینی تابش می‌شود.
 
در نقاط کوانتومی همان طور که در بالا گفتیم، انرژی‌های مجاز پیوسته نیستند و بین هر دو تراز انرژی فاصله می‌افتد. تحت این شرایط، مادة نیمه‌رسانا دیگر خاصیت‌های حالت توده‌ای خود را از دست می‌دهد. این اختلاف تأثیر زیادی روی شرایط جذب یا تابش نور در نیمه‌رسانا دارد.
 
از آنجا که ترازهای انرژی در نقاط کوانتومی دیگر پیوسته نیستند، کاستن یا افزودن تعدادی اتم به نقطه کوانتومی، باعث تغییر در حاشیه گاف انرژی می‌شود. تغییر نحوه چیده شدن اتم‌ها در سطح نقطه کوانتومی هم باعث تغییر انرژی گاف می‌شود، که باز هم به دلیل اندازه بسیار کوچک این نقاط است. اندازه گاف انرژی در نقطه کوانتومی همیشه بزرگتر از حالت توده ماده است. یعنی الکترون‌ها برای جهش از روی گاف، باید انرژی بیشتری آزاد کنند. بنابراین، نور تابش‌شده هم باید طول موج کوتاه‌تری داشته باشد، یا به اصطلاح، انتقال به آبی یافته باشد. این خاصیت باعث ایجاد قابلیت تنظیم طول موج تابشی، و در واقع انتخاب رنگ دلخواه برای نقاط کوانتومی می‌گردد.
 
6- رفتار نوری نقاط کوانتومی بدین ترتیب است که با تاباندن پرتوی فرا بنفش به آن‌ها، نور مرئی با طول موج‌های گوناگون از آن‌ها ساطع می‌شود. طول موج نوری که از نقاط کوانتومی ساطع می‌شود به اندازه‌ی نقاط کوانتومی بستگی دارد.
هر چه نقاط کوانتومی کوچک‌تر باشند،  فاصله‌ی بین نوارهای انرژی در آن بیش‌تر است و هر چه نقاط کوانتومی بزرگ‌تر باشند،  فاصله‌ی بین نوارهای انرژی در آن کم‌تر است.. پس در نقاط کوانتومی کوچک‌تر، گاف انرژی بزرگ ‌تر است و در نقاط کوانتومی بزرگ‌ تر، گاف انرژی کوچک‌ تر است.
 
بنابراین، با تاباندن پرتوی فرا بنفش به نقاط کوانتومی کوچک‌تر، الکترون‌هایی که به نوار انرژی بالاتر می‌روند، هنگام از دست دادن انرژی اضافی و بازگشت به حالت پایدار، گاف انرژی بزرگ‌تری را طی می‌کنند و لذا پرتوی نور مرئی‌ای که ساطع می‌کنند دارای انرژی بیش‌تر، و متمایل به رنگ آبی است. هم‌چنین با تاباندن پرتوی فرا بنفش به نقاط کوانتومی بزرگ‌تر، الکترون‌هایی که به نوار انرژی بالاتر می‌روند، هنگام از دست دادن انرژی اضافی و بازگشت به حالت پایدار، گاف انرژی کوچک‌تری را طی می‌کنند و لذا پرتوی نور مرئی‌ای که ساطع می‌کنند دارای انرژی کم‌تر بوده، و متمایل به رنگ قرمز است.
 
7. یک نقطه کوانتومی دارای شکل های مکعبی ریز،استوانه ای کوتاه یا کره ای با ابعاد کوچک نانومتری می باشد وقتی ابعاد کوچک می شود ،ازجابه جایی الکترون ها جلوگیری می شود وآن ها محدودیت راتجربه خواهند کرد.نقاط کوانتومی محدودیت رادرهرسه بعد فضایی اش نشان می دهدوبنابراین درآن هیچ جابه جایی وجود ندارد.
 

 انواع مختلف نقاط کوانتومی

موادی از قبیل سولفید سرب،سولفید روی،فسفات ایندیوم،آرسنیک ایندیوم،تلورید کاد میوم،سلنید کادمیوم،سولفید کادمیوم هستند که این مواد بسته به اندازه وطول موج معینی از نور،پس از تحریک الکترونها با استفاده از یک منبع خارجی از خود نور ساطع می کنند.
 
برخی نقاط کوانتومی نیزبه صورت ساختارهای هسته- پوسته هستند؛نظیر نقاط کوانتومی cdse(سلنید کادمیوم) که در هسته قرار داشته وبه وسیله پوسته ای از جنس zns(سولفید روی) پوشیده می شود و توانایی نشر نور به رنگهای مختلف را دارد و یا از فرمهای ویژه ای از سیلیکا به نام ormosil که هسته وپوسته به وسیله لایه ای پلیمری پوشیده می شوند.

روشهای ساخت نقاط کوانتومی

برای ساختن نقاط کوانتومی میتوان هم از روشهای بالا به پایین و هم از روشهای پایین به بالا استفاده کرد.مزیت استفاده از روشهای پایین به بالا امکان تولید انبوه و ارزان نقاط کوانتومی را ایجاد می کند و مزیت استفاده از روشهای بالا به پایین امکان کنترل بیشتر محل این نانوذرات و جاسازی آنها درون مدارهای الکترونیکی یا ابزارهای آزمایش می باشد.

بطور کلی روشهای سنتز نقاط کوانتومی شامل

1. سنتز کلوئیدی

2.  فراوری
3. خود آرایی ویروسی
4. خود آرایی الکترو شیمیایی
5. نقاط کوانتومی بدون کادمیوم
 

سنتزکلوییدی

در سنتز کلوئیدی نمکهای فلزی به صورت محلول تحت شرایط کنترل شده،به حالت بلوری در می آیند. سنتزنقاط کوانتومی کلوئیدی در سیستمی سه جزئی متشکل از پیش سازها،سورفکتانت آلی وحلال(سورفکتانتها موادی آلی هستند که یکسرقطبی( آب گریز) و یک سر غیر قطبی ( آب دوست) دارند. سر قطبی محلول در آب است،اما سر غیر قطبی در آب حل نمی شود و به همین علت این مواد همیشه به سطح آب می آیند و چون سطح آب محدود آست،این ملکولها یک لایه ی نازک بهم فشرده ومنظم را تشکیل می دهند.به این خاصیت"خود ساماندهی"می گویند.انواع مواد شوینده از این نوع اند در مواد شوینده سر غیر قطبی به چربیها وروغنها می چسبد و در نتیجه می توانیم آنها را با آب بشوییم)مهمترین مرحله در این روش جلوگیری از بزرگ شدن بیش از حد مطلوب این بلورهای نانومتری است که با تغییر دما یا افزودن مواد خاتمه‌دهنده واکنش یا تثبیت‌کننده‌ها صورت می‌گیرد. در این حالت، برای جلوگیری از به‌هم‌پیوستن ذرات کوانتومی، آنها را با یک لایه از سورفَکتنت‌ها می‌پوشانند. هر چه مراحل سنتز دقیق‌تر کنترل شوند ذرات یکنواخت‌تری به وجود می‌آیند.
 

روش فرآوری

نقاط کوانتومی به صورت نقطه به نقطه روی سطوح سیلیکون حک می‌شوند. این کار با استفاده از لیتوگرافی پرتو الکترونی یا لیتوگرافی قلم آغشته در ابعاد بسیار ریز امکان‌پذیر است. در این حالت، می‌توان به‌دقت محل قرارگیری نقاط کوانتومی را کنترل کرد و با طراحی مدارهای مناسب در اطراف آنها، بین یک یا چند نقطة کوانتومی با دنیای ماکروسکوپی ارتباط برقرار نمود.
 

روش خودآرایی ویروسی

دراین روش ،ویروس هایی که به طریق ژنتیکی دستکاری می شوند می توانند سطوح نیمه هادی بخصوص  نیمه هادی هایی نظیرZns راازطریق روش های انتخابگری شناسایی کنند واطراف این نیمه هادی آرایش یابند وبدین ترتیب نقاط کوانتومی ای که سنتز می شوند ،از نظر باکتری وفازهای نوترکیب بسیار متنوع هستند.
 

 روش خود آرایی الکترو شیمیایی

این روش براساس نشاندن لایه های نازک برروی سطوح نیمه هادی صورت می گیردویکی از روش های پایین به بالا برای ساختن نقاط کوانتومی است.
 

روش سنتز نقاط کوانتومی بدون کادمیوم

این روش بدین خاطرمورد توجه قرارگرفته است که استفاده از فلزات سنگین نظیر کادمیوم درساخت وسایل مورد نیار ممنوع است زیرا باعث تولید گازهای گلخانه ای می شود.بنابراین جهت بقای تجاری ،سنتز نقاط کوانتومی که فاقد فلزات سنگین باشند،مورد توجه است.
 

کاربردهای نقاط کوانتومی

کاربرد نقاط کوانتومی در پزشکی

انتشار نور توسط نقاط کوانتومی در تشخیصهای پزشکی کاربردهای فراوان دارد.این نقاط به صورت برچسب فلوئورسانتی عمل می کنند.با این تفاوت که در برابر درخشان شدن،خاصیت وتوانایی خود را از دست نمی دهندو در برابر تعداد سیکلهای تحریک وانتشار نور مقاومت بیشتری از خود نشان می دهند.
 
در واقع نقاط کوانتومی با تحریک الکتریکی یا توسط گستره وسیعی از طول موجها در فرکانسهای کاملا مشخص به فلوئور سانس می پردازند،به این شکل که فرکانسی از نور را جذب کرده ودر فرکانس مشخص(که تابع اندازه آنهاست) به نشر نور می پردازند.این ذرات همچنین می توانند بر حسب ولتاژاعمال شده،به انعکاس ،شکست یا جذب نور بپردازند. نقاط کوانتومی می توانند به گونه ای تنظیم شوند که در رنگ های مختلف با یک طول موج نور معین بدرخشند. به عبارتی می توانیم نقاط کوانتومی را بسته به فرکانس مورد نیاز نور انتخاب کنیم و باعث شویم تا یک گروه از نقاط کوانتومی مشابه گروه دیگری با یک طول موج بدرخشند. این امر به برچسبهای چندگانه امکان می دهد تا با استفاده از یک منبع نور وارد ردیابی شوند.
 
امروزه در پزشکی از نقاط کوانتومی در تشخیص مرز واقعی بین سلولهای سالم وسلولهای تومور در مغز می پردازند. تیمی از محققان اعلام داشته اند که نقاط کوانتومی در هنگام تزریق به حیوانات مبتلا به تومور مغزی در محل تومور تجمع می کنند.این نقاط  قابل رویت هستند و حتی زمانیکه تحت تابش قرار نمی گیرند نیز مرئی می باشند. زمانی که نور آبی یا نور ماورای بنفش به آنها تابانده می شود از خود نور فلوئورسانس قرمز ساطع می کنند. محقق این نور را با استفاده از دوربین های دیجیتالی ویژه ، وسایل اسپکتروسکوپی اپتیکی یا میکروسکوپ فلوئورسانس میدان تاریک دریافت می کنند و بدین ترتیب مکان دقیق تومور و حدفاصل آن با بافت سالم را تعیین می‌کنند.
 
این نقاط دردرمان ناباروری بویژه در مردان نیزکاربرددارند ،به این صورت که درمردان نابارور بااستفاده ازنانوربات های سیال وباکمک نقطه کوانتومی اسپرم رابه درون تخمک منتقل کرده وباروری موفقی راباوجودتعداد کم اسپرم یا اسپرم های ناتوان ایجاد خواهدکرد. نقاط کوانتومی برای کشف سلول های سرطانی در کل بدن ودرمان سرطان نیزکاربرد دارند،به این صورت که این نقاط رادر کپسول های پلیمری قرار می دهند وبا هدف رساندن آن به سلول سرطانی ورساندن دارو به منطقه هدف، برای درمان سلول موردنظر کاربرد دارندویکی اززمینه های بسیارجدید درتحقیقات ، چگونگی دریافت اطلاعات موردنظرازمولکول ها وسلول ها به وسیله کوانتوم دات ها است.
 

نشانگرهای بیولوژیکی

امکان تابش در فرکانس‌های مطلوب، نقاط کوانتومی را ابزاری کارآمد برای نشانه‌گذاری و تصویربرداری از سلول‌های موجودات زنده ساخته است. می‌توان نقاط کوانتومی را به انتهای بیومولکول‌های بزرگ مانند پروتئین‌ها یا رشته‌های DNA متصل کرد و از آنها برای شناسایی و ردیابی بیماری‌های درون بدن موجودات زنده استفاده کرد.
 
 تنوع طول موج‌های تابش نقاط کوانتومی این امکان را فراهم آورده است که همزمان چندین نشانگر را در اجزای سلول زنده به کار برد و از نحوه و میزان برهمکنش آنها مطلع شد. پیش از این از مولکول‌های رنگی برای این کار استفاده می‌شد که تنوع کمتری از نقاط کوانتومی از نظر رنگ‌ دارند و بیشتر باعث اختلال در فعالیت سلول‌های زنده می‌شوند و برای به‌کارگیری در درون بدن موجودات زنده مناسب نیستند. درواقع نشاندار کردن سلولها تکنیکی است که با استفاده از چندین رنگ جهت مشاهده ساختارهای سلولی نظیر پروتئینهای اسکلت سلولی ویا اندامک هاست .
 

کامپیوتر های کوانتومی

ازنقاط کوانتومی می‌توان برای نمایش یک بیت کوانتومی- یا کیوبیت- در یک کامپیوترکوانتومی استفاده کرد.درواقع کامپیوتر کوانتومی دستگاهی است که یک پدیده ی فیزیکی را بر اساس قوانین مکانیک کوانتومی به صورت منحصر به فردی در می آورد تا به صورت اساسی یک حالت جدیداز پردازش اطلاعات را تشخیص دهد.در مطلبی به طور جداگانه به بررسی کامپیوتر های کوانتومی می پردازیم.
 

دیودهای نورانی سفید

قابلیت تنظیم اندازة گپ انرژی با نقاط کوانتومی، این قابلیت را در اختیار ما می‌گذارد که آنها را به عنوان دیود نورانی به کار بگیریم. به این ترتیب، می‌توان به بازه بیشتری از رنگ‌ها دست یافت و منابع نور با کارآیی بسیار بالا ایجاد کرد. همچنین با ترکیب نقاط کوانتومی با ابعاد مختلف، می‌توان منابع پربازده برای تولید نور سفید ایجاد کرد، زیرا همة آنها را می‌توان از یک طریق برانگیخت.
 
می‌دانیم که نور سفید را می‌توان به نورهایی با رنگ‌های مختلف تجزیه کرد؛ مانند همان چیزی که در رنگین‌کمان مشاهده می‌کنیم. معکوس این حالت هم امکان‌پذیر است، یعنی می‌توان با ترکیب سه پرتو نوری یا بیشتر، با طول موج‌های مختلف، نوری تولید کرد که سفید به نظر بیاید. با آنکه نقاط کوانتومی در ابعاد مختلف طول موج‌های مختلفی تابش می‌کنند، اما همة آنها را می‌توان با یک پرتو نور دارای طول موجی در محدودة ماورای بنفش تحریک کرد. درست مانند شکل (ارلن‌های رنگی) که همة محلول‌ها تحت تابش یک منبع قرار دارند.
 
حال اگر سه تا از این محلول‌ها، و حتی بیشتر، را مخلوط کنیم، با جذب نور ماورای بنفش، نور سفیدرنگی از خود ساطع می‌کنند. چون طیف تابشی نقاط کوانتومی بسیار باریکتر از لامپ‌های التهابی است، دیگر اتلاف انرژی به صورت نور مادون قرمز، که در روشنایی لامپ بی‌تأثیر است، وجود ندارد. در نتیجه، منبع نور سفید با بازدهی بسیار بیشتری خواهیم داشت.
 

کاربرد نقاط کوانتومی درسا خت آشکارسازهای مادون قرمز

با کنترل ابعاد نقاط کوانتومی، میدان الکترومغناطیسی ،نور را دررنگها و طول موجهای مختلف، منتشرمی کند. به عنوان مثال، نقاط کوانتومی از جنس آرسنیدکادمیوم با ابعاد 3 نانومتر نور سبز منتشر می کند؛ درحالی که ذراتی به بزرگی 5/5 نانومتر از همان ماده نور قرمز منتشرمی کند. به دلیل قابلیت تولید نور در طول موجهای خاص نقاط کوانتومی ، این بلورهای ریز در ادوات نوری به کارمی روند. دراین عرصه از نقاط کوانتومی در ساخت آشکارسازهای مادون قرمزو دیودهای انتشار دهنده ی نورمی توان استفاده نمود. آشکارسازهای مادون قرمز از اهمیت فوق العاده ای برخوردارند. مشکل اصلی این آشکارسازها مسئله ی خنک سازی آنهاست. برای خنک سازی این آشکارسازها از اکسیژن مایع وخنک سازی الکترونیکی استفاده می شود. این آشکارسازها برای عملکرد صحیح باید دردماهای بسیار پائین، نزدیک به 80 درجه کلوین کارکنند، بنابراین قابل استفاده در دمای اتاق نیستند، درصورتی که از آشکارسازهای ساخته شده با استفاده از نقاط کوانتومی می توان به راحتی در دمای اتاق استفاده کرد.
 

اتم‌های مصنوعی

باردار کردن نقاط کوانتومی، به علت کوچکی، به سادگیِ باردار کردن اجسام بزرگ نیست. برای اضافه کردن هر الکترون به یک نقطة کوانتومی، باید بر انرژی الکترواستاتیک بین الکترون‌های روی نقطة کوانتومی غلبه کرد. این کار را با اِعمال میدان الکتریکی انجام می‌دهند. الکترون‌هایی که به نقاط کوانتومی اضافه می‌شوند، در ترازهای گسستة انرژی قرار می‌گیرند. این ترازها شبیه ترازهای مختلف اتم‌های عناصرند. به همین علت، به این نقاطِ کوانتومی باردارشده «اتم‌های مصنوعی» می‌گویند که خواصی متفاوت از اتم‌های عناصر طبیعی دارند. این اتم‌ها، امروزه موضوع تحقیقات وسیعی هستند و تعدادی از آنها به نام اولین کسی که این آزمایش‌ها را رویشان انجام داده، نامگذاری شده است.
 

عناصر مدارهای نوری

یکی از اصلی‌ترین چالش‌های صنعت ارتباطات، سرعت انتقال داده‌هاست که در حال حاضر به علت محدودیت طبیعیِ نیمه‌رساناهای توده‌ای در جذب و پاسخ به سیگنال، نمی‌تواند بیشتر از این شود. قابلیت تنظیم انرژی گپ و به تبع آن طیف جذبی و خواص ویژة نقاط کوانتومی، می‌تواند بر این مشکل فائق آید. نقاط کوانتومی همچنین قابلیت ایجاد لیزرهای کارآمدتر با اغتشاش کمتر برای ارتباطات سریع‌تر را فراهم می‌کنند.
 

سلول های خورشیدی

در نبود سوخت‌های فسیلی، یکی از منابع مهم تولید انرژی الکتریکی، تابش خورشید است. به دلیل افزایش نیاز بشر به منابع انرژی پاک، صنعت تولید سلو لهای خورشیدی با سرعت بسیاری در حال گسترش است.مشکل اصلیِ سلول خورشیدی کنونی، هزینة بالا و کارآیی کمِ آنهاست. سلول‌های خورشیدی از مواد نیمه‌رسانا تشکیل شده‌اند که با جذب نور خورشید، الکترون‌ها را به ترازهای باند رسانش هدایت می‌کنند و به نحوی باعث ایجاد نیروی محرکة الکتریکی می‌شوند. بازدهی سلول‌های خورشیدی توسط طیف جذبی آنها که جزو خواص ذاتی نیمه‌رساناهای توده‌ای است تعیین می‌شود.
 
سلو لهای خورشیدی سیلیکونی متعارف توانایی لازم برای تبدیل تمام انرژی فوتو نهای جذب شده به الکترو نها وحفر ه های آزاد و در نهایت تولید الکتریسیته را ندارند. از سوی دیگر، به علت قیمت بالای مواد خام نیمه هادی و نیز فرآیندهایی که برای تبدیل مواد خام به سلو لهای کاربردی نیاز است هزینه ی تولید این سلو لها بسیار بالا است. نقاط کوانتومی انقلابی را در تولید سلو لهای خورشیدی ارزا ن قیمت با بازد هی بالا آغاز کرده است.  انواع مختلف نقاط کوانتومی که به منظور تطبیق یافتن و جذب نور طیف خورشید طراحی شده اند را می توان در یک سلول خورشیدی گردآوری نمود .نقاط کوانتومی باا ستفاده ا زا ندازه منحصربه فردشان از قابلیت های مهمی برای برقراری تعامل نوری بامنبع نور برخوردار هستند. در سیلیکو نها، یک فوتون نوری، یک الکترون از مدار اتم رها می سازد. دراواخر دهه 90 میلادی آرتور نوزیک از محققان ارشد آزمایشگاه ملی منابع تجدیدپذیر انرژی در کلورادوی آمریکا بر این فرض بود که نقاط کوانتومی مواد خاص نیمه هاد یها هستند که می توانند به هنگام برخورد با فوتو نهای دارای سطح انرژی بالا دو یا تعداد بیشتری الکترون آزاد کنند. این فرآیند را در پایانه های فو ق بنفش و آبی طیف رنگی نیز مشاهده میکنیم.در واقع با طراحی نقاط کوانتومی که بیشتر همپوشانی را در طیف جذبی با طیف نور خورشید داشته باشند، می‌توان بازدهی سلول های خورشیدی را تا بیش از 90 درصد افزایش داد.
 

لیزرهای نقطه کوانتومی

واژه" لیزر" اختصاری برای عبارتی است به معنای " تقویت نور به وسیله ی گسیل برانگیخته نور"است .نورگسیل شده ازیک لیزرهم تکفام (تک طول موج )وهم همدوس (هم فاز ) می باشد .لیزرهای نقطه کوانتومی،یکی از انواع لیزرهای نیمه رسانا هستند.  نقاط کوانتومی به علت محدودیت حامل های بار وطیف نوری نشری گسسته که مربوط به ترازهای الکترونی گسسته می باشد ، ساختار الکترونیکی شبیه به اتم واقعی از خود به نمایش می گذارند.
 
از مزایای این لیزرها :

1. بهبود پهنای باند مدولاسیون

2. جریان آستانه پایین

3. بهبود پارامتر پهنای خط

4. حساسیت کم به دما را می توان نام برد

 
ناحیه فعال نقطه کوانتومی می تواند مهندسی شود تا یک طول موج خاص را منتشر سازد،این کار بوسیله سایز نقطه کوانتومی  و میزان ترکیب در آن کنترل می شود.کارایی لیزرهای نقطه کوانتومی بسیار بیشترازلیزرهای معمولی است.
مجله ایلیاد رادر اینستاگرام دنبال کنید...مجله ایلیاد رادر تلگرام دنبال کنید...مجله ایلیاد رادر آپارات دنبال کنید...مطالب مشابه● غلبه بر یکی از محدودیت‌های قانون اول ترمودینامیک● کشف آنزیمی که هوا را به انرژی تبدیل می‌کند● چرا در استوا وزن همه چیز کمتر است؟● طلای موجود بر روی زمین چگونه شکل گرفته است؟● چرا خوردن و آشامیدن قبل از انجام جراحی ممنوع است؟● سنگین‌ترین قطعه طلای جهان کجاست؟● حل معمای ۵۰۰ ساله‌ی لئوناردو داوینچی● چگونه لیزر می‌تواند رعد و برق را متوقف کند؟● دانشمندان با امواج صوت اجسامی را جابه‌جا کردند● چرا برخی رنگ‌ها مانند قهوه‌ای در رنگین‌کمان‌ها نیستند؟جدیدترین مطالب● آمار سرقت پس از قانون کاهش مجازات ● چطور لکه‌های مداد را از روی دیوار پاک کنیم؟● باکتری‌ها چگونه به مغز حمله می‌کنند؟● دانشمندان گامی دیگر به اینترنت کوانتومی نزدیک‌تر شده‌اند● چطور ویتامین B12 مورد نیاز بدن‌مان را تامین کنیم؟● ورود اورانیوم به خاک چه ارتباطی با کودهای کشاورزی دارد؟● آیا گیاهان هم صدا دارند؟● چطور در خانه توت فرنگی بکاریم؟● شواهد جدید برای مدل استاندارد کیهان‌شناسی● چطور جلوی استفراغ شیرخوار را بگیریم؟● سیاره‌ی ناهید فعالیت‌های آتشفشانی دارد● چطور برای یک سفر کمپینگ آماده شویم؟● قدیمی‌ترین نشانه‌های برخورد شهاب‌سنگ‌ها با زمین● تصویری فوق‌العاده از یک برج پلاسمایی بر روی سطح خورشید● چگونه با عدم تعادل شیمیایی در مغز برخورد کنیم؟● کشف درخشان و داغِ جیمز وب● پنج فایده‌ی دارچین برای سلامتی● کدام حیوان بلندترین گردن را در قلمرو حیوانات داشته است؟● چطور رادیاتور خودرو را تخلیه و تعویض کنیم؟● چگونه از شر مگسک چشم خلاص شویم؟